
Actually, Turing Didn’t Invent the Computer

Historical Reflections Column for Communications of the ACM, Jan 2014 issue

Draft for discussion at 2013 SIGCIS workshop. www.sigcis.org/workshop13

Thomas Haigh, University of Wisconsin--Milwaukee
 thaigh@computer.org, www.tomandmaria.com/tom

2012 was the one hundredth anniversary of the birth of Alan Turing. The computing community threw
its biggest ever birthday party. Major events were organized around the world, including conferences or
festivals in Princeton, Cambridge, Manchester, and Israel. There was a concert in Seattle and an opera in
Finland. Dutch and French researches built small Turing Machines out of Lego. Newspaper and magazine
articles by the thousand brought Turing’s life story to the public. The ACM assembled thirty three
winners of its Turing Award to discuss Turing’s ideas and their relationship to the future of computing.
Various buildings, several roads, and at least one bridge have been named after him.

Dozens of books with Turing’s name in the title were published or reissued. Turing was so ubiquitous
that even a book about John von Neumann was titled Turing’s Cathedral , becoming the first book on
the history of information technology to reach a broad audience since the one about Nazis with punched
card machines. Publishers are well aware that the public has an insatiable appetite for books with Nazis.
Its hunger for books about mathematicians and computer scientists is less acute, making Turing’s
newfound commercial clout both unlikely and heartening.

Still, as this flood of Turing-related material begins to recede it’s time to clean up some of the rather
rather bad smelling historical claims left in our metaphorical living basement. Space is short, so I will
focus here on the idea that Turing invented the computer. Very short version: it’s wrong.

In case you spent 2012 in a maximum security prison or meditating in a Tibetan monastery, let me
briefly summarize the computer-related high points of Turing’s actual career. In 1936, just two years
after completing his undergraduate degree, he introduced the concept now called the Turing Machine in
a paper called “'On computable numbers, with an application to the Entscheidungsproblem.” This has
since become the main abstract model of computation used by computer scientists. During the Second
World War he made several vital contributions as part of the team trying to decipher intercepted
German communications, which were encoded using specialized machines and had been thought
unbreakable. Immediately after the war he designed an electronic computer, the ACE, for the National
Physical Laboratory. This design was eventually built, and even used for one of the first commercial
computers, though Turing had by then departed for the University of Manchester. He worked there with
one of the earliest modern computers, but turned to more abstract and philosophical questions.
Pondering the possibility of what we would now call artificial intelligence he proposed that we should
judge a computer intelligent if someone could not reliably tell it from a real human after conducting a
typed conversation with it. This procedure is now called the “Turing Test.” His career came to an abrupt
end in 1954 with his death, usually attributed to suicide following various humiliations inflicted by the
authorities after a legal conviction for homosexuality.

http://www.sigcis.org/workshop13
mailto:thaigh@computer.org
http://www.tomandmaria.com/tom

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 2

That’s a remarkable career by any measure, with enough tragedy and genius to hook a broader audience
and make Turing an unlikely gay icon. I don’t have the expertise to evaluate the common claim that
Turing’s work shortened the war by several years but even a more cautious evaluation of the impact of
his wartime work would make him a mistreated national hero. To celebrate Turing is therefore to
celebrate freedom and decency, as well as genius. Let’s just make sure we do our cheering in a
historically responsible manner.

Retroactively Founding Computer Science

Turing provided a crucial part of the foundation of theoretical computer science. There was no such
thing as computer science during the early 1950s. That is to say there were no departments of computer
science, no journals, no textbooks, and no community of self-identified computer scientists. An
increasing number of university faculty and staff were building their careers around computers, whether
in teams creating one-off computers or in campus computer centers serving users from different
scientific disciplines. However these people had backgrounds and appointments in disciplines such as
electrical engineering, mathematics, and physics. When they published articles, supervised dissertations,
or sought grants they had to be fit within the priorities and cultures of established disciplines. The study
of computing always had to be justified as a means, not as an end in itself.

Ambitious computer specialists were not all willing to make that compromise and sought to build a new
discipline. It was eventually called computer science in the US, though other names were proposed and
sometimes adopted. To win respectability in elite research universities the new discipline needed its
own body of theory. The minutiae of electronic hardware remained the province of engineering.
Applied mathematics and numerical analysis were tied too closely to the computer center tradition of
service work to support physicists and engineers. Thus the new field needed a body of rigorous theory
unique to computation and abstracted from engineering and applied mathematics.

When building a house the foundation goes in first. The foundations of a new discipline are constructed
rather later in the process. Turing’s 1936 paper was excavated by others from the tradition of
mathematical logic in which it was originally embedded and moved underneath the developing new
field. In several papers historian Michael S. Mahoney sketched the process by which this body of theory
was assembled, using pieces scavenged from formerly separate mathematical and scientific traditions.
The creators of computer science drew on earlier work from mathematical logic, formal language
theory, coding theory, electrical engineering, and various other fields. Techniques and results from
different scientific fields, many of which had formerly been of purely intellectual interest, were now
reinterpreted within the emerging framework of computer science.1 Historians who have looked at
Turing’s influence on the development of computer science have shown that the relevance of his work
to actual computers was not widely understood in 1940s.2

1 See part three of Mahoney’s Histories of Computing, cited below.
2 For example Priestley, M. A Science of Operations, Springer, 2010. Akera, A, Calculating a Natural World, MIT,
2006. Mounier Kuhn, P. “Logic and Computing in France: A Late Convergence,” International Symposium on
History and Philosophy of Programming, http://www.computing-conference.ugent.be/file/12.

http://www.computing-conference.ugent.be/file/12

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 3

Turing was not, in any literal sense, one of the builders of the new discipline. He was not involved with
the ACM or other early professional groups, did not found or edit any journal, and did not direct the
dissertations of a large cohort of future computer scientists. He never built up a laboratory, set up a
degree program, or won a major grant to develop research in the area. His name does not appear as the
organizer of any of the early symposia for computing researchers, and by the time of his death his
interests had already drifted away from the central concerns of the nascent discipline.

Turing’s 1936 paper was one of the most important fragments assembled during the 1950s to build this
new intellectual mosaic. While Turing himself did see the conceptual connection he did not make a
concerted push to popularize this theoretical model to those interested in computers. However the
usefulness of his work as a model of computation was, by the end of the 1950s, widely appreciated
within large parts of the emerging computer science community. Edgar Daylight has suggested that
Turing’s rise in prominence owed much to the embrace of his work by a small group of theorists,
including Saul Gorn, John W. Carr, and Alan J. Perlis, who shared a particular interest in the theory of
programming languages.3 His intellectual prominence has been increasing ever since, a status both
reflected in and reinforced by the ACM’s 1966 decision to name its premier award after him.

So Who Did Invent the Computer?

This question, asked at a party, will cause any responsible historian of computing to blanch and mumble
an excuse before scurrying to the safety of the drinks table. The whole way we write and think about the
computers of the 1940s is an attempt to avoid having to provide a single answer to that question.
Instead we award each early machine, and its main inventor(s), a metaphorical trophy engraved with a
phrase such as “first general purpose automatic electronic digital computer.” These trophies adorn the
figurative mantelpieces of John Atanasoff, Konrad Zuse, J. Presper Eckert, John Mauchly, Fred Kilburn,
Tommy Flowers, Howard Aiken, and Maurice Wilkes. Those who focus on designs, rather than actual
functioning machine, can and do make the case for Charles Babbage and John von Neumann. A
colleague once joked to me that we should identify and honor the earliest computer never to be claimed
as the first computer.

The story behind all those “firsts” goes like this. From the late-1930s to the mid-1940s a number of
automatic computing machines were built. Their inventors often worked in ignorance of each other.
Some relied on electromechanical relays for their logic circuits, while others used vacuum tubes. Several
machines executed sequences of instructions read one a time from rolls of paper tape. Thanks in part to
a series of legal battles around a patent granted on the ENIAC these machines dominated early
discussion of the history of computing and their creation has been well documented.

The “modern” or “stored program” computers from which subsequent computers evolved were defined
by two interrelated breakthroughs. On an engineering level, computer projects of the late-1940s
succeeded or failed based primarily on their ability to get large, fast memories to work reliably. The first
technology proposed, by Eckert who oversaw the engineering of ENIAC at the University of

3 E.G. Daylight, Towards a Historical Notion of ‘Turing—the Father of Computer Science.” To appear in History and
Philosophy of Logic. www.dijkstrascry.com/TuringPaper

http://www.dijkstrascry.com/TuringPaper

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 4

Pennsylvania, was the mercury delay line. Freddy Williams, working on the computer project at
Manchester University, was the first to successfully store bits on a cathode ray tube. These were the two
dominant high speed memory technologies until the mid-1950s.

On a conceptual level, the breakthrough was inventing what we could now call a computer architecture
able to take advantage of the flexibility of these new memories. Historians agree that the first wave of
modern computers under construction around the world during the late-1940s were all inspired by a
single conceptual design, an unpublished typescript cryptically titled “First Draft of a Report on the
EDVAC.” This unfinished document summarized discussions among the team working on a successor to
ENIAC. Its title page named only John von Neumann as its author, though the extent to which he
personally created the ideas within rather than summarizing the team’s progress has been much
debated. Turing produced his own ACE design only after reading and being influenced by this document,
though his approach diverges in several interesting respects from von Neumann’s.

Arguments For Turing

As historians followed this progression of machines and ideas they found few mentions of Turing’s
theoretical work in the documents produced during the 1940s by the small but growing community of
computer creators. Turing is thus barely mentioned in the two main overview histories of computing
published during the 1990s: Computer by Campbell-Kelly and Aspray, and A History of Modern
Computing by Ceruzzi.

Much of the overstatement of Turing’s role, in newspaper articles or by participants in online discussion,
is based on simple misunderstandings. For example, a series of Colossus computers was used by the
British for wartime code breaking work. These were the first electronic digital computers to work
properly. People often assume, incorrectly, that Turing must have designed Colossus because he worked
at the same secret facility doing closely related work.

I could fill many columns doing nothing more than skewering ridiculous things written about Turing,
many of them by people who ought to know better. We will lean more by looking at the best supported,
most careful arguments in favor of the idea that Turing invented the computer. The philosopher Jack
Copeland has been the most passionate and industrious booster of Turing’s role in recent years,
unleashing a book on Turing’s ACE computer, another on Colossus, a collection of Turing’s work, a
website full of original Turing related materials, and a series of journal articles. His work continues the
influential legacy of logician Martin Davis, whose history of computing Engines of Logic presented the
universal Turing machine as the crucial advance behind the modern computer.

A painstaking and easily accessible summary of the case for Turing comes is “Alan Turing: Father of the
Modern Computer” published by Copeland and Diane Proudfoot in an online journal edited by
Copeland.4 This claims that the “fundamental conception” embodied in the “First Draft Report” came
from Turing, and that von Neumann himself “repeatedly emphasized” this. Copeland also believes that

4 Copeland, B.J & Proudfoot, D. “Alan Turing: Father of the Modern Computer,” Rutherford Journal, vol 4, 2011-12.
http://www.rutherfordjournal.org/article040101.html

http://www.rutherfordjournal.org/article040101.html

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 5

“right from the start” Turing was interested in building an actual computer based on the conceptual
mechanism described in his 1936 paper. This extends a recent trend, seen for example in George
Dyson’s book, to write about the teams working to build computers in the late-1940s as if they launched
their projects primarily to build practical realizations of Turing’s abstract machine.

Copeland is deeply knowledgeable about computing in the 1940s, but as a philosopher approaches the
topic from with a different perspective from most historians. While he provides footnotes to support
these assertions they are often to interviews or other sources written many years after the events
concerned. For example, the claim that Turing was interested in building an actual computer in 1936 is
sourced not to any diary entry or letter from the 1930s but to the recollections of one of Turing’s
lecturers made long after real computers had been built. Like a good legal brief, his advocacy is rooted in
detailed evidence but pushes the reader in one very particular direction without drawing attention to
other possible interpretations less favorable to the client’s interests.

Theory vs. Practice

Arguments of this kind raise fundamental issues about the connection of theory and practice. Are
abstract, theoretical insights more fundamental than pragmatic, engineering based advances? Must
theoretical breakthroughs precede and guide practical ones? For a computer scientist, in particular, it is
easy to assume that Turing’s theoretical work was as centrally important to the computer designers of
the 1940s as it later become within computer science. There is also something undeniably attractive in
the story of a lone genius who anticipates the rest of the world by many years.

Turing’s work was not completely unknown in the 1940s. There is, for example, reliable evidence that
von Neumann was aware of the now-famous paper and shared Turing’s interest in the underlying
mathematical questions it addressed.

Where one might leap into fantasy is by asserting that the cluster of ideas contained in von Neumann’s
“First Draft” are merely a restatement, or at most an elaboration, of Turing’s earlier work on
computability. Judge for yourself, by placing Turing’s 1936 “On Computable Numbers…” and von
Neumann’s 1945 “First Draft of a Report on the EDVAC” side by side. They are easy to find with Google,
though might want to pour yourself a fortifying beverage first as neither is particularly easy reading.

The former is a paper on mathematical logic. It describes a thought experiment, like Schrödinger’s
famous 1935 description of a trapped cat shifting between life and death in response to the behavior of
a single atom. Schrödinger was not trying to advance the state of the art of feline euthanasia. Neither
was Turing proposing the construction of a new kind of calculating machine. As the title of his paper
suggested, Turing’s designed his ingenious imaginary machines to address a question about the
fundamental limits of mathematical proof. They were structured for simplicity, and had little in common
with the approaches taken by people designing actual machines.

Von Neumann’s report said nothing explicitly about mathematical logic. It described the architecture of
an actual planned computer and the technologies by which it could be realized, and was written to
guide the team that had already won a contract to develop the EDVAC. Von Neumann does abstract

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 6

away from details of the hardware, both to focus on what we would now call “architecture” and
because the computer projects underway at the Moore School were still classified in 1945. His letters
from the period reveal are full of discussion of engineering details, such as sketches of particular vacuum
tube models and their performance characteristics.

The phrase “stored program concept” has sometimes been used to encapsulate the content of the “First
Draft” report, but this underplays its actual impact by implying that it held just one big idea. In fact it
provided a wealth of intertwined ideas and details. In my current work with Mark Priestley and Crispin
Rope I have found it useful to separate these into three main areas.5 The first, the “EDVAC Hardware
Paradigm” described an all-electronic binary computer with a much larger memory than anything ever
built previously. The second, the “von Neumann Architecture Paradigm,” set out the basic structure of
the modern computer: special purpose registers on which all operations were performed and from
which data was exchanged with main memory , separation of arithmetic functions from control
functions from memory units, only one action performed at a time, and so on. The third, the “Modern
Code Paradigm,” concerns the nature and capabilities of its instructions. For example, instructions were
expressed as through a small vocabulary of operation codes followed by argument or address fields.
These were held in the same numbered memory cells as data. While executed by default in a particular
sequence, the machine could jump out of sequence and the destination of this jump could be modified
as the program ran based on the state of the computation.

Taken together, this von Neumann’s cluster of ideas guided the construction of computers that were
much cheaper, smaller, more reliable, and more flexible than their predecessors. ENIAC, the first general
purpose electronic digital computer, used almost 18,000 vacuum tubes. The more tubes a machine held
the more expensive it was to build and, as they eventually burn out, the less reliable. Its immediate
successors held one or two thousand tubes yet could handle problems of greater logical complexity and
were easier to program. This efficiency made possible the construction of computers in cash-strapped
Britain following the war, and made computers affordable and useful enough that they were rapidly
turned into commercial products and applied to business tasks as well as scientific computations.

According to Copeland, “the fundamental conception of the stored-program universal computer” was
Turing’s. von Neumann merely “wrote the first paper explaining how to turn convert Turing’s ideas into
electronic form.” So what would have been different about von Neumann’s “First Draft” report if Turing
had never written his famous paper? My personal answer to that question is: nothing (with the possible
exception of the neuron notation he appropriated to describe logic gates, as its creators cited Turing).

Copeland has gone so far as to argue that the basic idea of a single machine that could do different jobs
when fed different instructions can be traced to Turing.6 But Charles Babbage had that idea long before,
and as mentioned above several computers controlled by sequential instruction tapes had already been
constructed with no influence from Turing and were well known to von Neumann before he wrote his
report. EDVAC went far beyond this to store a program in addressable internal memory rather than on a
sequential instruction tape. To suggest that this advance came from Turing is odd, as the machine Turing

5 “Reconsidering the Stored Program Concept,” forthcoming in IEEE Annals of the History of Computing.
6 http://www.huffingtonpost.com/jack-copeland/what-apple-and-microsoft-_b_3742114.html

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 7

described had no internal writable memory and took its instructions from a tape. Von Neumann brought
a concern with logic and preference for minimal, general purpose mechanisms to the design of EDVAC
but he did not need Turing to teach him that. He was a mathematic genius with a deep pragmatic streak
and an astonishing track record of productive collaborations across a huge range of fields.

Turing’s 1936 paper contained none of the influential design features found in the “First Draft…” such as
addressable memory locations. Neither did Turing describe instruction codes followed by arguments,
the building blocks of computer programs. The suggestion that the EDVAC design was merely a
conversion of Turing’s paper implies that these features are trivial, and that the single important idea in
each document is that code and data should be treated interchangeably so that programs can modify
themselves. Yet while Turing’s paper showed that one machine could, in modern terms, emulate the
functioning of another it never described a machine altering its own instructions. Furthermore, at the
very end of the “First Draft” von Neumann expressly forbade EDVAC from overwriting the operation
fields in its instructions, even though he relied on modifications to their address fields to accomplish
basic operations such as conditional branching. Address modification was a very influential idea in the
First Draft, but was, of course, absent from Turing’s paper as his machines did not use addresses. In
other words, the capability for unrestricted self-modifying code that von Neumann is said to have copied
from Turing is something that Turing didn’t describe and that von Neumann’s design explicitly
prohibited.

Computer Science vs. Computing

Our urge to believe that the computer projects of the late 1940s were driven by a desire to implement
universal Turing machines is part of a broader predisposition to see theoretical computer science driving
computing as a whole. If Turing invented computer science, which is itself something of an
oversimplification, then surely he must have invented the computer. The computer is, in this view, just a
working through of the fundamental theoretical ideas represented by a universal Turing machine in that
it is universal and stores data and instructions interchangeably.

This line of thinking blurs the fundamental distinction between building something and modeling it.
Copeland shows that as early as 1949 von Neumann alluded to Turing’s abstract model of computation
as an interesting proof that automata with a certain “minimum level of complexity” could simulate each
other’s functioning. Yet finding an abstraction useful or provocative as a model of particular real system
does not imply that the design of the real system was patterned the abstraction. An abstraction,
ultimately, is useful because of what it leaves out.

To focus on historical computers primarily as embodiments of logical ideas, ignoring the tradeoffs their
creators made when faced with limited resources and unproven technologies, is to abstract away from
the information needed to understand their history and development. Progress in electronic
engineering, particularly in memory technologies, created the circumstances in which it began to make
sense of thinking about high speed digital computers. In turn, ideas about the best way to design these
machines drove further progress in component technologies and engineering methods.

Thomas Haigh Actually, Turing Didn’t Invent the Computer Draft for SIGCIS 2013. 8

As I argued above, the universal Turing machine has appealed to theorists from the 1950s onward
precisely because it abstracts away from the complexity of real computer architectures and decouples
questions of computability from those of design and engineering. This has been enormously useful for
computing theorists, both technically and sociologically. Yet, paradoxically, the world seems increasingly
eager to locate the origin of the computer in a mathematical abstraction adopted precisely because it
hid all the messy issues of architecture and engineering needed to make any real computer function.
Hardware and software are interchangeable to the theorist, but not to the historian.

Further Reading

• Lavington S., ed. Alan Turing and His Contemporaries: Building the World’s First Computers.
British Informatics Society, 2012. A concise and clearly written expert history, honoring Turing’s
accomplishments and placing them in the context of British computer developments during the
1940s.

• Hodges, A. Alan Turing: The Enigma (Centenary Edition). Princeton University Press, 2012. An
updated edition of the monumental biography that originally put Turing on the road to broader
fame.

• Copeland, J. Turing: Pioneer of the Information Age. Oxford, 2013. A concise summary of
Copeland’s work on Turing’s ideas and their legacy. He has produced related volumes on
Turing’s planned ACE computer and the wartime Colossus work.

• Aspray, W. John von Neumann and the Origins of Modern Computing. MIT Press, 1990. A
thorough and careful survey of von Neumann’s many contributions to early computing,
including his work on the “First Draft…”

• Mahoney, M.S., ed. Haigh, T. Histories of Computing. Harvard University Press, 2011. Section
three of this book, “The Structures of Computation,” is a provocative selection of papers on the
origins of theoretical computer science and its relationship to computation and simulation.

